Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.924
Filtrar
1.
J Sci Food Agric ; 104(1): 225-234, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549225

RESUMO

BACKGROUND: Environmental stress can induce oxidative stress in Apis cerana cerana, leading to cellular oxidative damage, reduced vitality, and even death. Currently, owing to an incomplete understanding of the molecular mechanisms by which A. cerana cerana resists oxidative damage, there is no available method to mitigate the risk of this type of damage. Cyclin plays an important role in cell stress resistance. The aim of this study was to explore the in vivo protection of cyclin H against oxidative damage induced by abiotic stress in A. cerana cerana and clarify the mechanism of action. We isolated and identified the AccCyclin H gene in A. cerana cerana and analysed its responses to different exogenous stresses. RESULTS: The results showed that different oxidative stressors can induce or inhibit the expression of AccCyclin H. After RNA-interference-mediated AccCyclin H silencing, the activity of antioxidant-related genes and related enzymes was inhibited, and trehalose metabolism was reduced. AccCyclin H gene silencing reduced A. cerana cerana high-temperature tolerance. Exogenous trehalose supplementation enhanced the total antioxidant capacity of A. cerana cerana, reduced the accumulation of oxidants, and improved the viability of A. cerana cerana under high-temperature stress. CONCLUSION: Our findings suggest that trehalose can alleviate adverse stress and that AccCyclin H may participate in oxidative stress reactions by regulating trehalose metabolism. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Trealose , Animais , Abelhas/genética , Antioxidantes/metabolismo , Estresse Oxidativo , Estresse Fisiológico , Interferência de RNA , Proteínas de Insetos/química
2.
ACS Nano ; 17(24): 25311-25321, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38064446

RESUMO

Natural materials, such as locust mandibles and squid beaks, define significant mechanical gradients that have been attributed to the chemical gradients of their specialized structural proteins (SPs). However, the mechanism by which SPs form chemical gradients in these materials remains unknown. In this study, a highly abundant histidine-rich structural protein (LmMHSP) was identified in the mandible of a migratory locust (Locusta migratoria). LmMHSP was proven by both in vivo and in vitro evidence to act as a core building block of the mandible with a variety of synergistic functions including chitin binding, matrix formation via liquid-liquid phase separation, chemical cross-linking, and metal coordination. Furthermore, we found that the SP gradient in the locust mandible stems from the chitin-binding activity of LmMHSP and different microstructures of chitin scaffolds in different regions. These findings advance our understanding of the formation mechanisms of natural biomaterials and have implications for the fabrication of biomimetic materials.


Assuntos
Materiais Biomiméticos , Locusta migratoria , Animais , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Quitina/química , Locusta migratoria/metabolismo
3.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836800

RESUMO

(1) Background: Few studies have been carried out to appraise abamectin toxicity toward Locusta migratoria nymphs. (2) Methods: This study aimed to evaluate the cytotoxic effect of abamectin as an insecticide through examining the changes and damage caused by this drug, in both neurosecretory cells and midgut, using L. migratoria nymphs as a model of the cytotoxic effect. Histopathological change in the brain was examined in both normal and abamectin-treated fifth-instar nymphs. Neurosecretory cells (NSCs) were also examined where there were loosely disintegrated cells or vacuolated cytoplasm. (3) Results: The results showed distinct histological changes in the gastrointestinal tract of L. migratoria nymphs treated with abamectin, with significant cellular damage and disorganization, i.e., characteristic symptoms of cell necrosis, a destroyed epithelium, enlarged cells, and reduced nuclei. The observed biochemical changes included an elevation in all measured oxidative stress parameters compared to untreated controls. The malondialdehyde activities (MDAs) of the treated nymphs had a five- to six-fold increase, with a ten-fold increase in superoxide dismutase (SOD), nine-fold increase in glutathione-S-transferase (GST), and four-fold increase in nitric oxide (NO). (4) Conclusions: To further investigate the theoretical method of action, a molecular docking simulation was performed, examining the possibility that abamectin is an inhibitor of the fatty acid-binding protein Lm-FABP (2FLJ) and that it binds with two successive electrostatic hydrogen bonds.


Assuntos
Inseticidas , Locusta migratoria , Animais , Simulação de Acoplamento Molecular , Locusta migratoria/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Estresse Oxidativo , Proteínas de Insetos/química
4.
Biomacromolecules ; 24(8): 3729-3741, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37525441

RESUMO

Microstructured hydrogels are promising platforms to mimic structural and compositional heterogeneities of the native extracellular matrix (ECM). The current state-of-the-art soft matter patterning techniques for generating ECM mimics can be limited owing to their reliance on specialized equipment and multiple time- and energy-intensive steps. Here, a photocross-linking methodology that traps various morphologies of phase-separated multicomponent formulations of compositionally distinct resilin-like polypeptides (RLPs) is reported. Turbidimetry and quantitative 1H NMR spectroscopy were utilized to investigate the sequence-dependent liquid-liquid phase separation of multicomponent solutions of RLPs. Differences between the intermolecular interactions of two different photocross-linkable RLPs and a phase-separating templating RLP were exploited for producing microstructured hydrogels with tunable control over pore diameters (ranging from 1.5 to 150 µm) and shear storage moduli (ranging from 0.2 to 5 kPa). The culture of human mesenchymal stem cells demonstrated high viability and attachment on microstructured hydrogels, suggesting their potential for developing customizable platforms for regenerative medicine applications.


Assuntos
Hidrogéis , Medicina Regenerativa , Humanos , Hidrogéis/química , Peptídeos/química , Proteínas de Insetos/química
5.
J Sci Food Agric ; 103(11): 5401-5411, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37029991

RESUMO

BACKGROUND: The widespread use of glyphosate has many adverse effects on Apis cerana cerana. Due to the incomplete understanding of the molecular mechanisms of glyphosate toxicity, there are no available methods for mitigating the threat of glyphosate to Apis cerana cerana. Small heat shock proteins (sHSPs) play an important role in resisting oxidative stress, but their mechanism of action in Apis cerana cerana remains unclear. RESULTS: In this experiment, we cloned and identified AccsHSP21.7. Studies have shown that AccsHSP21.7 contains binding motifs for various transcription factors related to oxidative stress. Abiotic stresses induced the expression of AccsHSP21.7. Bacteriostatic testing of a recombinant AccsHSP21.7 protein proved that Escherichia coli overexpressing AccsHSP21.7 showed increased resistance to oxidative stress. Knocking down the AccsHSP21.7 gene caused significant damage to midgut cells, which seriously disrupted the antioxidant system in Apis cerana cerana and greatly increased mortality under glyphosate stress. CONCLUSION: This study investigated the relationship between antioxidant regulation and the AccsHSP21.7 gene at the molecular level, and the results have guiding significance for the improvement of stress resistance in Apis cerana cerana. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Estresse Oxidativo , Abelhas/genética , Animais , Antioxidantes/metabolismo , Estresse Fisiológico , Proteínas Recombinantes/genética , Fatores de Transcrição/metabolismo , Proteínas de Insetos/química
6.
Biomacromolecules ; 24(4): 1774-1783, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36952229

RESUMO

3,4-Dihydroxyphenylalanine (DOPA), a naturally occurring yet noncanonical amino acid, endows protein polymers with diverse chemical reactivities and novel functionalities. Although many efforts have been made to incorporate DOPA into proteins, the incorporation efficiency and production titer remain low and severely hinder the exploration of these peculiar proteins for biomaterial fabrication. Here, we report an efficient biosynthetic strategy to produce large amounts of DOPA-incorporated structural proteins for the fabrication of hydrogels with tunable mechanical properties. First, synthetic genes were constructed that encode repetitive resilin-like proteins (RLPs) with varying proportions of tyrosine residues and molecular weights (Mw). Decoding of these genes into RLPs incorporated with DOPA was achieved via mis-aminoacylation of DOPA by endogenous tyrosyl-tRNA synthetase (TyrRS) in recombinant Escherichia coli cells. By developing a stoichiometry-guided two-phase culture strategy, we achieved independent control of the bacterial growth and protein synthesis phases. This enabled hyperproduction of the DOPA-incorporated RLPs at gram-per-liter levels and with a high DOPA incorporation yield of 76-85%. The purified DOPA-containing RLPs were then successfully cross-linked into bulk hydrogels via facile DOPA-Fe3+ complexations. Interestingly, these hydrogels exhibited viscoelastic and self-healing properties that are highly dependent on the catechol content and Mw of the RLPs. Finally, exploration of the molecular cross-linking mechanisms revealed that higher DOPA contents of the proteins would result in the concomitant occurrence of metal coordination and oxidative covalent cross-linking. In summary, our results suggest a useful platform to generate DOPA-functionalized protein materials and provide deeper insights into the gelation systems based on DOPA chemistry.


Assuntos
Di-Hidroxifenilalanina , Hidrogéis , Di-Hidroxifenilalanina/química , Hidrogéis/química , Proteínas de Insetos/química , Polímeros
7.
Parasite ; 29: 53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350195

RESUMO

Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae) is an important parasitic wasp of second and third-instar noctuid larvae such as the insect pests Spodoptera exigua, Spodoptera litura, and Spodoptera frugiperda. As in other insects, M. pallidipes has a chemosensory recognition system that is critical to foraging, mating, oviposition, and other behaviors. Odorant-binding proteins (OBPs) are important to the system, but those of M. pallidipes have not been determined. This study used PacBio long-read sequencing to identify 170,980 M. pallidipes unigenes and predicted 129,381 proteins. Following retrieval of possible OBP sequences, we removed those that were redundant or non-full-length and eventually cloned five OBP sequences: MpOBP2, MpOBP3, MpOBP8, MpOBP10, and MpPBP 429, 429, 459, 420, and 429 bp in size, respectively. Each M. pallidipes OBP had six conserved cysteine residues. Phylogenetic analysis revealed that the five OBPs were located at different branches of the phylogenetic tree. Additionally, tissue expression profiles indicated that MpOBP2 and MpPBP were mainly expressed in the antennae of male wasps, while MpOBP3, MpOBP8, and MpOBP10 were mainly expressed in the antennae of female wasps. MpOBP3 was also highly expressed in the legs of female wasps. Temporal profiles revealed that the expression of each M. pallidipes OBP peaked at different days after emergence to adulthood. In conclusion, we identified five novel odorant-binding proteins of M. pallidipes and demonstrated biologically relevant differences in expression patterns.


Title: Identification et profil d'expression des protéines de liaison aux odeurs chez la guêpe parasite Microplitis pallidipes à l'aide du séquençage à lecture longue PacBio. Abstract: Microplitis pallidipes Szépligeti (Hymenoptera : Braconidae) est une importante guêpe parasite des larves de noctuelles de deuxième et troisième stades telles que les insectes ravageurs Spodoptera exigua, Spodoptera litura et Spodoptera frugiperda. Comme d'autres insectes, M. pallidipes possède un système de reconnaissance chimiosensoriel, essentiel à la recherche de nourriture, à l'accouplement, à la ponte et à d'autres comportements. Les protéines de liaison aux odeurs (PLO) sont importantes pour le système, mais celles de M. pallidipes n'ont pas été déterminées. Cette étude a utilisé le séquençage à lecture longue PacBio pour identifier 170 980 unigènes de M. pallidipes et prédit 129 381 protéines. Après la récupération des séquences de PLO possibles, nous avons supprimé celles qui étaient redondantes ou pas de pleine longueur et avons finalement cloné cinq séquences de PLO, MpOBP2, MpOBP3, MpOBP8, MpOBP10 et MpPBP, respectivement de taille 429, 429, 459, 420 et 429 pb. Chaque PLO de M. pallidipes avait six résidus de cystéine conservés. L'analyse phylogénétique a révélé que les cinq PLO étaient situés à différentes branches de l'arbre phylogénétique. De plus, les profils d'expression tissulaire ont indiqué que MpOBP2 et MpPBP étaient principalement exprimés dans les antennes des guêpes mâles, tandis que MpOBP3, MpOBP8 et MpOBP10 étaient principalement exprimés dans les antennes des guêpes femelles. MpOBP3 était également fortement exprimé dans les pattes des guêpes femelles. Les profils temporels ont révélé que l'expression de chaque PLO de M. pallidipes culminait à différents jours après l'émergence à l'âge adulte. En conclusion, nous avons identifié cinq nouvelles protéines de liaison aux odeurs de M. pallidipes et démontré des différences biologiquement pertinentes dans les profils d'expression.


Assuntos
Vespas , Animais , Feminino , Vespas/genética , Filogenia , Odorantes , Spodoptera/metabolismo , Spodoptera/parasitologia , Larva/genética , Larva/parasitologia , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Transcriptoma
8.
Int J Biol Macromol ; 223(Pt A): 1521-1529, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36400212

RESUMO

As an important class of chemosensory-associated proteins, odorant binding proteins (OBPs) play a key role in the perception of olfactory signals for insects. Parasitoid wasp Microplitis mediator relies on its sensitive olfactory system to locate host larvae of Noctuidae and Geometridae. In the present study, MmedOBP14, a male-biased OBP in M. mediator, was functionally investigated. In fluorescence competitive binding assays, the recombinant MmedOBP14 showed strong binding abilities to five plant volatiles: ß-ionone, 3,4-dimethylacetophenone, 4-ethylacetophenone, acetophenone and ocimene. Homology modeling and molecular docking results indicated that the binding sites of all five ligands were similar and concentrated in the binding pocket of MmedOBP14. Except acetophenone, the remaining four ligands at 1, 10 and 100 µg/µL caused strong antennal electrophysiological responses in adults M. mediator, and males showed more obvious EAG responses to most ligands than females. In behavioral trials, males were attracted by low concentrations of MmedOBP14 ligands, whereas high doses of ß-ionone and acetophenone had a repellent effect on males. Moreover, 1 µg/µL of 3,4-dimethylacetophenone showed the strongest attractiveness to female wasps. These findings suggest that MmedOBP14 may play a more important role in the perception of plant volatiles for male wasps to locate habitat, supplement nutrition and search partners.


Assuntos
Receptores Odorantes , Vespas , Animais , Feminino , Masculino , Simulação de Acoplamento Molecular , Proteínas de Insetos/química , Receptores Odorantes/metabolismo , Norisoprenoides/metabolismo , Ligantes , Plantas/metabolismo
9.
Biomacromolecules ; 23(12): 5225-5238, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36378745

RESUMO

Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials. The present study investigates the interplay between the solvent, sequence syntax, structure, and dynamics in promoting LLPS of resilin-like-polypeptides (RLPs) derived from domains 1 and 3 of Drosophila melanogaster pro-resilin. NMR, UV-vis, and microscopy data demonstrate that while kosmotropic salts and low pH promote LLPS, the effects of chaotropic salts with increasing pH are more complex. Subtle variations between the repeating amino acid motifs of resilin domain 1 and domain 3 lead to significantly different salt and pH dependence of LLPS, with domain 3 sequence motifs more strongly favoring phase separation under most conditions. These findings provide new insight into the molecular drivers of RLP phase separation and the complex roles of both RLP sequence and solution composition in fine-tuning assembly conditions.


Assuntos
Drosophila melanogaster , Proteínas de Insetos , Animais , Proteínas de Insetos/química , Peptídeos , Materiais Biocompatíveis , Engenharia Tecidual , Motivos de Aminoácidos
10.
Protein Sci ; 31(10): e4438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173163

RESUMO

Ostrinia furnacalis is an invasive lepidopteran agricultural pest that relies on olfaction for mating and reproduction. Male moths have an extremely sensitive olfactory system that can detect the sex pheromones emitted by females over a great distance. Pheromone-binding proteins present in the male moth antenna play a key role in the pheromone uptake, transport, and release at the dendritic membrane of the olfactory neuron. Here, we report the first high-resolution NMR structure of a pheromone-binding protein from an Ostrinia species at pH 6.5. The core of the Ostrinia furnacalis PBP2 (OfurPBP2) consists of six helices, α1a (2-14), α1b (16-22), α2 (27-37), α3 (46-60), α4 (70-80), α5 (84-100), and α6 (107-124) surrounding a large hydrophobic pocket. The structure is stabilized by three disulfide bridges, 19-54, 50-108, and 97-117. In contrast to the unstructured C-terminus of other lepidopteran PBPs, the C-terminus of OfurPBP2 folds into an α-helix (α7) at pH 6.5. The protein has nanomolar affinity towards both pheromone isomers. Molecular docking of both pheromones, E-12 and Z-12-tetradecenyl acetate, to OfurPBP2 revealed that the residues Met5, Lys6, Met8, Thr9, Phe12, Phe36, Trp37, Phe76, Ser115, Phe118, Lys119, Ile122, His123, and Ala128 interact with both isomers, while Thr9 formed a hydrogen bond with the acetate head group. NMR structure and thermal unfolding studies with CD suggest that ligand release at pH 4.5 is likely due to the partial unfolding of the protein.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Proteínas de Transporte/química , Dissulfetos/metabolismo , Feminino , Proteínas de Insetos/química , Ligantes , Masculino , Simulação de Acoplamento Molecular , Mariposas/química , Mariposas/metabolismo , Feromônios/química , Feromônios/metabolismo , Atrativos Sexuais/metabolismo
11.
Food Chem ; 396: 133701, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35882087

RESUMO

Although edible insect migratory locusts are considered sustainable food resources with proteins and n-3 lipids, their physiological effects on lipid metabolism are not clarified. Here, we clarified the amino acid (AA) value of the edible migratory locust powder (MLP), protein digestibility, and dietary effects of MLP on growth and lipid metabolism in rats. The AA score was 63, which was low score due to the limiting AA (Trp). MLP protein digestibility was resistant to gut pepsin but digestible to intestinal trypsin and chymotrypsin. Dietary MLP represented favorable growth and enhanced intestinal condition and lipid metabolism in rats, particularly, low-density lipoprotein metabolism and arteriosclerosis-related fatty acid profiles. Liver triglyceride accumulation and fatty acid desaturation indices were increased by activating lipids uptake into the liver, while lipogenic protein expression and enzyme activities and liver function indices were reduced by MLP. Conclusively, intestinal digestible MLP is a nutraceutical for the prevention of dyslipidemia.


Assuntos
Insetos Comestíveis , Locusta migratoria , Aminoácidos , Animais , Ácidos Graxos , Proteínas de Insetos/química , Metabolismo dos Lipídeos , Lipídeos , Fígado , Locusta migratoria/química , Masculino , Proteínas , Ratos
12.
Biomacromolecules ; 23(6): 2562-2571, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561014

RESUMO

Insect cuticle is a fiber-reinforced composite material that consists of polysaccharide chitin fibers and a protein matrix. The molecular interactions between insect cuticle proteins and chitin that govern the assembly and evolution of cuticles are still not well understood. Herein, we report that Ostrinia furnacalis cuticular protein hypothetical-1 (OfCPH-1), a newly discovered and most abundant cuticular protein from Asian corn borer O. furnacalis, can form coacervates in the presence of chitosan. The OfCPH-1-chitosan coacervate microdroplets are initially liquid-like but become gel-like with increasing time or salt concentration. The liquid-to-gel transition is driven by hydrogen-bonding interactions, during which an induced ß-sheet structure of OfCPH-1 is observed. Given the abundance of OfCPH-1 in the cuticle of O. furnacalis, this liquid-liquid phase separation process and its aging behavior could play critical roles in the formation of the cuticle.


Assuntos
Quitosana , Mariposas , Animais , Quitina/química , Proteínas de Insetos/química , Insetos , Mariposas/metabolismo
13.
J Mol Graph Model ; 114: 108191, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500361

RESUMO

Host plant recognition are highly dependent on chemosensory perception, which involves chemosensory proteins (CSPs) that bind key chemical compounds the host plants. In this work, we hypothesize that two closely related aphid taxa, which differ in diet breadth, also differ in their CSPs. We detected a non-synonymous difference (lysine for asparagine) between M. persicae sensu stricto (Mpp) and the subspecies M. p. nicotianae (Mpn) in the sequence of a CSP (CSP5). We modeled in silico the binding capacity of both CSP5s variants with 163 different potential ligands from their host plants (120 unique from tobacco, 29 unique from peach, and 14 common ligands). After docking analysis with all ligands, we selected the three best ligands for each variant to perform molecular dynamics (tobacco: 2-cyclopentene-1,4-dione, salicylaldehyde, and benzoic acid; peach: phenol, valeric acid, and benzonitrile). The binding energy of the MpnCSP5 model to the studied ligands was, in all cases, lower than with the MppCSP5 model. The ligands from the host plants showed more stable binding with MpnCSP5 than with MppCSP5. This result suggests that the set of CSPs studied among M. persicae s. str. and M. p. nicotianae are very similar, but focusing on the CSP5 protein, we found a single key mutation that increases affinities for host compounds for M. p. nicotianae, which might have contributed to the specialization to tobacco. This study provides new insights into an evolutionary trend toward specificity in a binding protein.


Assuntos
Afídeos , Proteínas de Insetos , Animais , Afídeos/genética , Afídeos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ligantes , Simulação de Dinâmica Molecular , Mutação
14.
ACS Appl Mater Interfaces ; 14(17): 19178-19191, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442625

RESUMO

The Bacillus thuringiensis (Bt) Cry proteins are widely used in insect pest control. Despite their economic benefits, remaining concerns over potential ecological and health risks warrant their ongoing surveillance. Affinity reagents, most often antibodies, protein scaffolds, and aptamers, are the traditional tools used for protein binding and detection. We report a synthetic antibody (SA) alternative to traditional biological affinity reagents for binding Bt Cry proteins. Analysis of hotspots of the Bt Cry protein-insect midgut cadherin-like receptor complexes was used for the design of the SA. The SA was selected from a small focused library of hydrogel copolymers containing functional monomers complementary to key exposed hotspots of Bt Cry proteins. A directed chemical evolution identified a SA, APhe-NP23, with affinity and selectivity for Bt Cry1Ab/Ac proteins. The putative intermolecular polymer-protein interfaces were identified by the SA's uptake of Bt Cry1Ac pepsin hydrolysates, binding epitope mutation studies, and protein-protein inhibition studies of the toxin binding to its native insect receptor binding domains. The SA inhibitor binds to the same protein domains as the insect's cadherin-like receptors, Bt-R1 and SeCad1b. The SA binds rapidly to Bt Cry1Ab/Ac with high capacity, is pH-responsive, and is synthesized reproducibly. We believe that a hotspot-directed approach is general for creation of abiotic protein affinity reagents that target functional protein domains. Affinity ligands are typically high-information content biologicals. Their structure and function are determined from their amino acid or oligo sequence. In contract, the SA described in this work is a statistical copolymer that lacks sequence specificity. These results are an important contribution to the concept that randomness and biospecificity are not mutually exclusive.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Caderinas/metabolismo , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/química , Larva/metabolismo , Ligação Proteica , Domínios Proteicos
15.
Proc Natl Acad Sci U S A ; 119(10): e2115669119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238667

RESUMO

SignificanceSimilar to mammalian TLR4/MD-2, the Toll9/MD-2-like protein complex in the silkworm, Bombyx mori, acts as an innate pattern-recognition receptor that recognizes lipopolysaccharide (LPS) and induces LPS-stimulated expression of antimicrobial peptides such as cecropins. Here, we report that papiliocin, a cecropin-like insect antimicrobial peptide from the swallowtail butterfly, competitively inhibits the LPS-TLR4/MD-2 interaction by directly binding to human TLR4/MD-2. Structural elements in papiliocin, which are important in inhibiting TLR4 signaling via direct binding, are highly conserved among insect cecropins, indicating that its TLR4-antagonistic activity may be related to insect Toll9-mediated immune response against microbial infection. This study highlights the potential of papiliocin as a potent TLR4 antagonist and safe peptide antibiotic for treating gram-negative sepsis.


Assuntos
Anti-Infecciosos Locais/farmacologia , Peptídeos Antimicrobianos/farmacologia , Borboletas/imunologia , Imunidade Inata/efeitos dos fármacos , Proteínas de Insetos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Anti-Infecciosos Locais/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Receptor 4 Toll-Like/metabolismo
16.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163109

RESUMO

Cotton bollworm (Helicoverpa armigera) is a worldwide agricultural pest in which the transport of pheromones is indispensable and perceived by pheromone-binding proteins (PBPs). However, three-dimensional structure, pheromone binding, and releasing mechanisms of PBPs are not completely illustrated. Here, we solved three structures of the cotton bollworm HarmPBP1 at different pH values and its complex with ligand, Z-9-hexadecenal. Although apo-HarmPBP1 adopts a common PBP scaffold of six α-helices surrounding a predominantly hydrophobic central pocket, the conformation is greatly distinct from other apo-PBPs. The Z-9-hexadecenal is bound mainly by hydrophobic interaction. The pheromone can enter this cavity through an opening between the helices α5 and α6, as well as the loop between α3 and α4. Structural analysis suggests that ligand entry into the pocket is followed by a shift of Lys94 and Lys138, which may act as a lid at the opening of the pocket. Acidic pH will cause a subtle structural change of the lid, which in turn affects its ligand-binding ability, differently from other family proteins. Taken together, this study provides structural bases for the interactions between pheromones and PBPs, the pH-induced conformational switch, and the design of small inhibitors to control cotton bollworms by disrupting male-female chemosensory communication.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Feromônios/metabolismo , Animais , Mariposas , Conformação Proteica
17.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204784

RESUMO

Insects devote a major part of their metabolic resources to the production of odorant binding proteins (OBPs). Although initially, these proteins were implicated in the solubilisation, binding and transport of semiochemicals to olfactory receptors, it is now recognised that they may play diverse, as yet uncharacterised, roles in insect physiology. The structures of these OBPs, the majority of which are known as "classical" OBPs, have shed some light on their potential functional roles. However, the dynamic properties of these proteins have received little attention despite their functional importance. Structural dynamics are encoded in the native protein fold and enable the adaptation of proteins to substrate binding. This paper provides a comparative review of the structural and dynamic properties of OBPs, making use of sequence/structure analysis, statistical and theoretical physics-based methods. It provides a new layer of information and additional methodological tools useful in unravelling the relationship between structure, dynamics and function of insect OBPs. The dynamic properties of OBPs, studied by means of elastic network models, reflect the similarities/dissimilarities observed in their respective structures and provides insights regarding protein motions that may have important implications for ligand recognition and binding. Furthermore, it was shown that the OBPs studied in this paper share conserved structural 'core' that may be of evolutionary and functional importance.


Assuntos
Receptores Odorantes , Animais , Proteínas de Insetos/química , Insetos/fisiologia , Odorantes , Feromônios , Filogenia , Receptores Odorantes/metabolismo
18.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215815

RESUMO

Aedes aegypti mosquitoes are important vectors of several debilitating and deadly arthropod-borne (arbo) viruses, including Yellow Fever virus, Dengue virus, West Nile virus and Zika virus (ZIKV). Arbovirus transmission occurs when an infected mosquito probes the host's skin in search of a blood meal. Salivary proteins from mosquitoes help to acquire blood and have also been shown to enhance pathogen transmission in vivo and in vitro. Here, we evaluated the interaction of mosquito salivary proteins with ZIKV by surface plasmon resonance and enzyme-linked immunosorbent assay. We found that three salivary proteins AAEL000793, AAEL007420, and AAEL006347 bind to the envelope protein of ZIKV with nanomolar affinities. Similar results were obtained using virus-like particles in binding assays. These interactions have no effect on viral replication in cultured endothelial cells and keratinocytes. Additionally, we found detectable antibody levels in ZIKV and DENV serum samples against the recombinant proteins that interact with ZIKV. These results highlight complex interactions between viruses, salivary proteins and antibodies that could be present during viral transmissions.


Assuntos
Aedes/metabolismo , Proteínas de Insetos/metabolismo , Mosquitos Vetores/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas do Envelope Viral/metabolismo , Zika virus/metabolismo , Aedes/química , Aedes/genética , Aedes/virologia , Animais , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Queratinócitos/metabolismo , Queratinócitos/virologia , Cinética , Mosquitos Vetores/química , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Ligação Proteica , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Replicação Viral , Zika virus/química , Zika virus/genética
19.
Insect Biochem Mol Biol ; 141: 103707, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979251

RESUMO

The role of odorant- and pheromone-binding proteins (OBPs) in olfactory function is not fully understood. We found an OBP sequence from the stable fly, Stomoxys calcitrans, ScalOBP60, that has a 25 amino acid N-terminal extension with a high content of histidine and acidic amino acids, suggesting a possible metal binding activity. A search of public databases revealed a large number of other fly OBPs with histidine-rich N-terminal extensions, as well as beetle, wasp and ant OBPs with histidine-rich C-terminal extensions. We recombinantly expressed ScalOBP60, as well as a truncated sequence which lacks the histidine-rich N-terminal region, tScalOBP60. Using fluorescence quenching and electrospray quadrupole time-of-flight mass spectrometry (ESI-QTOF), we detected two different types of metal-binding sites. Divalent copper, nickel and zinc bind to the N-terminal histidine-rich region, and divalent copper binds to an internal sequence position. Comparison of the ESI-QTOF spectra of ScalOBP60 and tScalOBP60 showed that the histidine-rich sequence is structurally disordered, but it becomes more ordered in the presence of divalent metal. When copper is bound to the internal site, binding of a hydrophobic ligand to ScalOBP60 is inhibited. The internal and N-terminal metal sites interact allosterically, possibly through a conformational equilibrium, suggesting a mechanism for metal regulation of ligand binding to ScalOBP60. Based on our studies of ScalOBP60, we propose several possible olfactory and non-olfactory functions for this OBP.


Assuntos
Proteínas de Insetos/genética , Muscidae/genética , Receptores Odorantes/genética , Animais , Sítios de Ligação , Histidina/química , Histidina/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Muscidae/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo
20.
J Med Chem ; 65(3): 2297-2312, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34986308

RESUMO

The development of novel and safe insecticides remains an important need for a growing world population to protect crops and animal and human health. New chemotypes modulating the insect nicotinic acetylcholine receptors have been recently brought to the agricultural market, yet with limited understanding of their molecular interactions at their target receptor. Herein, we disclose the first crystal structures of these insecticides, namely, sulfoxaflor, flupyradifurone, triflumezopyrim, flupyrimin, and the experimental compound, dicloromezotiaz, in a double-mutated acetylcholine-binding protein which mimics the insect-ion-channel orthosteric site. Enabled by these findings, we discovered novel pharmacophores with a related mode of action, and we describe herein their design, synthesis, and biological evaluation.


Assuntos
Desenho de Fármacos , Proteínas de Insetos/metabolismo , Inseticidas/síntese química , Receptores Nicotínicos/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Animais , Sítios de Ligação , Besouros/efeitos dos fármacos , Besouros/metabolismo , Cristalografia por Raios X , Humanos , Controle de Insetos/métodos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Compostos de Enxofre/química , Compostos de Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...